Knowledge Center
Constants, Energy Gaps, and Physical Propertiesof Semiconductor related Crystals
Source: Sze, S.M., Physics of Semiconductor Device, , Wiley Interscience Publication, 1981, pp. 848-849.
Material System | Element or Compound | Name | Structure1 | Lattice Constant (A) at 300 K | Band Gap (ev) at 300 K | Band2 |
---|---|---|---|---|---|---|
IV | C | Carbon (diamond) | D | 3.56683 | 5.47 | I |
Ge | Germanium | D | 5.64613 | 0.66 | I | |
Si | Silicon | D | 5.43095 | 1.12 | I | |
Sn | Grey Tin | D | 6.48920 | 0.00 | I | |
IV-IV | SiC | Silicon carbide | W | a = 3.086, c= 15.117 | 2.996 | I |
III-V | AlAs | Aluminum arsenide | Z | 5.6605 | 2.16 | I |
AlP | Aluminum phosphide | Z | 5.4510 | 2.45 | ||
AlSb | Aluminum antimonide | Z | 6.1355 | 1.58 | I | |
BN | Boron nitride | Z | 3.6150 | ~7.5 | I | |
BP | Boron phosphide | Z | 4.5380 | 2.0 | ||
GaAs | Gallium arsenide | Z | 5.6533 | 1.42 | I | |
GaN | Gallium nitride | W | a = 3.189, c = 5.185 | 3.36 | ||
GaP | Gallium phosphide | Z | 5.4512 | 2.26 | I | |
GaSb | Gallium antimonide | Z | 6.0959 | 0.72 | D | |
InAs | Indium arsenide | Z | 6.0584 | 0.36 | D | |
InP | Indium phosphide | Z | 5.8686 | 1.35 | D | |
InSb | Indium antimonide | Z | 6.4794 | 0.17 | D | |
II-VI | CdS | Cadmium sulfide | Z | 5.8320 | 2.42 | D |
CdS | Cadmium sulfide | W | a = 4.16, c = 6.756 | 2.42 | D | |
CdSe | Cadmium selenide | Z | 6.050 | 1.70 | D | |
CdTe | Cadmium telluride | Z | 6.482 | 1.56 | D | |
ZnO | Zinc oxide | R | 4.580 | 3.35 | D | |
ZnS | Zinc sulfide | Z | 5.420 | 3.68 | D | |
ZnS | Zinc sulfide | W | a = 3.82, c = 6.26 | 3.68 | D | |
ZnSe | Zinc selenide | Z | 5.668 | 2.71 | D | |
ZnTe | Zinc telluride | Z | 6.103 | 2.393 | D | |
IV-VI | PbS | Lead sulfide | R | 5.9362 | 0.41 | I |
PbSe | Lead selenide | R | 6.126 | 0.27 | I | |
PbTe | Lead telluride | R | 6.4620 | 0.31 | I |
- D = Diamond, W = Wurzite, Z = Zincblende, R = Rock Salt
- I = Indirect, D = Direct
- At ~ 2K.
American Wire Gauge Table and AWG Electrical Current Load Limits
AWG gauge | Diameter Inches | Diameter mm | Ohms per 1000 ft | Maximum amps for chassis wiring |
---|---|---|---|---|
1 | 0.2893 | 7.34822 | 0.1239 | 211 |
2 | 0.2576 | 6.54304 | 0.1563 | 181 |
3 | 0.2294 | 5.82676 | 0.197 | 158 |
4 | 0.2043 | 5.18922 | 0.2485 | 135 |
5 | 0.1819 | 4.62026 | 0.3133 | 118 |
6 | 0.162 | 4.1148 | 0.3951 | 101 |
7 | 0.1443 | 3.66522 | 0.4982 | 89 |
8 | 0.1285 | 3.2639 | 0.6282 | 73 |
9 | 0.1144 | 2.90576 | 0.7921 | 64 |
10 | 0.1019 | 2.58826 | 0.9989 | 55 |
11 | 0.0907 | 2.30378 | 1.26 | 47 |
12 | 0.0808 | 2.05232 | 1.588 | 41 |
13 | 0.072 | 1.8288 | 2.003 | 35 |
14 | 0.0641 | 1.62814 | 2.525 | 32 |
15 | 0.0571 | 1.45034 | 3.184 | 28 |
16 | 0.0508 | 1.29032 | 4.016 | 22 |
17 | 0.0453 | 1.15062 | 5.064 | 19 |
18 | 0.0403 | 1.02362 | 6.385 | 16 |
19 | 0.0359 | 0.91186 | 8.051 | 14 |
20 | 0.032 | 0.8128 | 10.15 | 11 |
21 | 0.0285 | 0.7239 | 12.8 | 9 |
22 | 0.0254 | 0.64516 | 16.14 | 7 |
23 | 0.0226 | 0.57404 | 20.36 | 4.7 |
24 | 0.0201 | 0.51054 | 25.67 | 3.5 |
25 | 0.0179 | 0.45466 | 32.37 | 2.7 |
26 | 0.0159 | 0.40386 | 40.81 | 2.2 |
27 | 0.0142 | 0.36068 | 51.47 | 1.7 |
28 | 0.0126 | 0.32004 | 64.9 | 1.4 |
29 | 0.0113 | 0.28702 | 81.83 | 1.2 |
30 | 0.01 | 0.254 | 103.2 | 0.86 |
31 | 0.0089 | 0.22606 | 130.1 | 0.7 |
32 | 0.008 | 0.2032 | 164.1 | 0.53 |
33 | 0.0071 | 0.18034 | 206.9 | 0.43 |
34 | 0.0063 | 0.16002 | 260.9 | 0.33 |
35 | 0.0056 | 0.14224 | 329 | 0.27 |
36 | 0.005 | 0.127 | 414.8 | 0.21 |
37 | 0.0045 | 0.1143 | 523.1 | 0.17 |
38 | 0.004 | 0.1016 | 659.6 | 0.13 |
39 | 0.0035 | 0.0889 | 831.8 | 0.11 |
40 | 0.0031 | 0.07874 | 1049 | 0.09 |
- Verneuil method (Flame fusion)
- Czochralski method (Pulling up)
- Bridgman method (Pulling down)
- Kryopulos method
- Bagdasarov (HDC method)
- LEC method (Liquid Encapsulated Czochralski)
- The development of Crystal Growth Technology -- Hans J. Scheel, Chairman of IOCG (Excellent review on Crystal growth history and future)
How to make Thin Film by dip coating
- Definition of dip coating (wiki)
- Novel Thin Film deposition of colloidal nano-particle
- Crystallization Study of SrTio
How to deposit thin film by thermo-evaporation
- How to make a high-temperature furnace
- What is SCR power control
- Thermo-potential vs temperature for different types of thermocouples
- Knowledge of MoSi2 Heating Element
- Knowledge of MoSi2 Heating Element: Image 1(Straight blade) , Image 2(Twist)
- Metric Conversions
- Conversion of the pressure unit
- Conversion of moisture/humidity
- Conversion of temperature unit
- Principle of Thin Film Deposition
- Plasma sputter coating (pdf)
- Chemical vapor deposition technique (CVD) (wiki)
- MOCVD technology and material growth
- Physical vapor deposition technique (PVD) for growing nanostructures by tube furnace
- Laser ablation technique
- Growth of ZnO nano-rod by VLS process in tube furnace
- Growth of Si nano-wire by VLS process
How to Disperse Nanoparticles / Nanopowders
How to disperse nanoparticles / nanopowders (nanomaterials)? How to disperse nano-materials and mix with other powder?
Disperse nanoparticles: 1) If used in the aqueous phase, may use ultrasonic treatment to disperse; 2) If used in the oil phase, may use high shear mixing instrument to disperse. 3) If directly used as dry powder form, may use ball mill treatment to disperse.
How to disperse nano-materials and mix with other powder? There is no specific method of the world. It is still a research topic. In general, if one nanomaterial will be mixed with another powder (for example, your ceramic powder), the first step is to put the nanomaterial into water or ethanol in the high-speed mixing instrument, add 1% dodecylbenzene sulfonate (detergent main ingredients), Instantly after mixing, then put the dispersed nanomaterial into the other powder (your ceramic powder) and continue to mix by still using the high-speed mixing instrument, stirring rate the higher the better, time the longer the better as well, and then heating the mixed liquid material to be evaporated completely.