Knowledge Center

Constants, Energy Gaps, and Physical Propertiesof Semiconductor related Crystals

Source: Sze, S.M., Physics of Semiconductor Device, , Wiley Interscience Publication, 1981, pp. 848-849.


Material System Element or Compound Name Structure1 Lattice Constant (A) at 300 K Band Gap (ev) at 300 K Band2
IV C Carbon (diamond) D 3.56683 5.47 I
Ge Germanium D 5.64613 0.66 I
Si Silicon D 5.43095 1.12 I
Sn Grey Tin D 6.48920 0.00 I
IV-IV SiC Silicon carbide W a = 3.086, c= 15.117 2.996 I
III-V AlAs Aluminum arsenide Z 5.6605 2.16 I
AlP Aluminum phosphide Z 5.4510 2.45
AlSb Aluminum antimonide Z 6.1355 1.58 I
BN Boron nitride Z 3.6150 ~7.5 I
BP Boron phosphide Z 4.5380 2.0
GaAs Gallium arsenide Z 5.6533 1.42 I
GaN Gallium nitride W a = 3.189, c = 5.185 3.36
GaP Gallium phosphide Z 5.4512 2.26 I
GaSb Gallium antimonide Z 6.0959 0.72 D
InAs Indium arsenide Z 6.0584 0.36 D
InP Indium phosphide Z 5.8686 1.35 D
InSb Indium antimonide Z 6.4794 0.17 D
II-VI CdS Cadmium sulfide Z 5.8320 2.42 D
CdS Cadmium sulfide W a = 4.16, c = 6.756 2.42 D
CdSe Cadmium selenide Z 6.050 1.70 D
CdTe Cadmium telluride Z 6.482 1.56 D
ZnO Zinc oxide R 4.580 3.35 D
ZnS Zinc sulfide Z 5.420 3.68 D
ZnS Zinc sulfide W a = 3.82, c = 6.26 3.68 D
ZnSe Zinc selenide Z 5.668 2.71 D
ZnTe Zinc telluride Z 6.103 2.393 D
IV-VI PbS Lead sulfide R 5.9362 0.41 I
PbSe Lead selenide R 6.126 0.27 I
PbTe Lead telluride R 6.4620 0.31 I

  1. D = Diamond, W = Wurzite, Z = Zincblende, R = Rock Salt
  2. I = Indirect, D = Direct
  3. At ~ 2K.

American Wire Gauge Table and AWG Electrical Current Load Limits


AWG gauge Diameter Inches Diameter mm Ohms per 1000 ft Maximum amps for chassis wiring
1 0.2893 7.34822 0.1239 211
2 0.2576 6.54304 0.1563 181
3 0.2294 5.82676 0.197 158
4 0.2043 5.18922 0.2485 135
5 0.1819 4.62026 0.3133 118
6 0.162 4.1148 0.3951 101
7 0.1443 3.66522 0.4982 89
8 0.1285 3.2639 0.6282 73
9 0.1144 2.90576 0.7921 64
10 0.1019 2.58826 0.9989 55
11 0.0907 2.30378 1.26 47
12 0.0808 2.05232 1.588 41
13 0.072 1.8288 2.003 35
14 0.0641 1.62814 2.525 32
15 0.0571 1.45034 3.184 28
16 0.0508 1.29032 4.016 22
17 0.0453 1.15062 5.064 19
18 0.0403 1.02362 6.385 16
19 0.0359 0.91186 8.051 14
20 0.032 0.8128 10.15 11
21 0.0285 0.7239 12.8 9
22 0.0254 0.64516 16.14 7
23 0.0226 0.57404 20.36 4.7
24 0.0201 0.51054 25.67 3.5
25 0.0179 0.45466 32.37 2.7
26 0.0159 0.40386 40.81 2.2
27 0.0142 0.36068 51.47 1.7
28 0.0126 0.32004 64.9 1.4
29 0.0113 0.28702 81.83 1.2
30 0.01 0.254 103.2 0.86
31 0.0089 0.22606 130.1 0.7
32 0.008 0.2032 164.1 0.53
33 0.0071 0.18034 206.9 0.43
34 0.0063 0.16002 260.9 0.33
35 0.0056 0.14224 329 0.27
36 0.005 0.127 414.8 0.21
37 0.0045 0.1143 523.1 0.17
38 0.004 0.1016 659.6 0.13
39 0.0035 0.0889 831.8 0.11
40 0.0031 0.07874 1049 0.09

How to Disperse Nanoparticles / Nanopowders

How to disperse nanoparticles / nanopowders (nanomaterials)? How to disperse nano-materials and mix with other powder?

Disperse nanoparticles: 1) If used in the aqueous phase, may use ultrasonic treatment to disperse; 2) If used in the oil phase, may use high shear mixing instrument to disperse. 3) If directly used as dry powder form, may use ball mill treatment to disperse.

How to disperse nano-materials and mix with other powder? There is no specific method of the world. It is still a research topic. In general, if one nanomaterial will be mixed with another powder (for example, your ceramic powder), the first step is to put the nanomaterial into water or ethanol in the high-speed mixing instrument, add 1% dodecylbenzene sulfonate (detergent main ingredients), Instantly after mixing, then put the dispersed nanomaterial into the other powder (your ceramic powder) and continue to mix by still using the high-speed mixing instrument, stirring rate the higher the better, time the longer the better as well, and then heating the mixed liquid material to be evaporated completely.